0%

Kafka

Kafka

拓扑结构

ef35529683d3fe948250b8a4985450cb.png

  1. producer:
      消息生产者,发布消息到 kafka 集群的终端或服务。
  2. broker:
      kafka 集群中包含的服务器。
  3. topic:
      每条发布到 kafka 集群的消息属于的类别,即 kafka 是面向 topic 的。
  4. partition:
      partition 是物理上的概念,每个 topic 包含一个或多个 partition。kafka 分配的单位是 partition。
  5. consumer:
      从 kafka 集群中消费消息的终端或服务。
  6. Consumer group:
      high-level consumer API 中,每个 consumer 都属于一个 consumer group,每条消息只能被 consumer group 中的一个 Consumer 消费,但可以被多个 consumer group 消费。
  7. replica:
      partition 的副本,保障 partition 的高可用。
  8. leader:
      replica 中的一个角色, producer 和 consumer 只跟 leader 交互。
  9. follower:
      replica 中的一个角色,从 leader 中复制数据。
  10. controller:
      kafka 集群中的其中一个服务器,用来进行 leader election 以及 各种 failover。
  11. zookeeper:
      kafka 通过 zookeeper 来存储集群的 meta 信息。

zookeeper节点

eaec86120c4f10c45efdb6ca8d5b760b.png

producer

写入方式:

producer 采用 push 模式将消息发布到 broker,每条消息都被 append 到 patition 中,属于顺序写磁盘(顺序写磁盘效率比随机写内存要高,保障 kafka 吞吐率)。

分区路由:

producer 发送消息到 broker 时,会根据分区算法选择将其存储到哪一个 partition。其路由机制为:

  1. 指定了 patition,则直接使用;
  2. 未指定 patition 但指定 key,通过对 key 的 value 进行hash 选出一个 patition
  3. patition 和 key 都未指定,使用轮询选出一个 patition。

写入流程:

  1. producer 先从 zookeeper 的 “/brokers/…/state” 节点找到该 partition 的 leader
  2. producer 将消息发送给该 leader
  3. leader 将消息写入本地 log
  4. followers 从 leader pull 消息,写入本地 log 后 leader 发送 ACK
  5. leader 收到所有 ISR 中的 replica 的 ACK 后,增加 HW(high watermark,最后 commit 的 offset) 并向 producer 发送 ACK

producer delivery guarantee

一般情况下存在三种情况:

  1. At most once 消息可能会丢,但绝不会重复传输
  2. At least one 消息绝不会丢,但可能会重复传输
  3. Exactly once 每条消息肯定会被传输一次且仅传输一次

broker

存储方式:

物理上把 topic 分成一个或多个 patition(对应 server.properties 中的 num.partitions=3 配置),每个 patition 物理上对应一个文件夹(该文件夹存储该 patition 的所有消息和索引文件)

存储策略

无论消息是否被消费,kafka 都会保留所有消息。有两种策略可以删除旧数据:

  1. 基于时间:log.retention.hours=168
  2. 基于大小:log.retention.bytes=1073741824

HA

replication

同一个 partition 可能会有多个 replica(对应 server.properties 配置中的 default.replication.factor=N)。没有 replica 的情况下,一旦 broker 宕机,其上所有 patition 的数据都不可被消费,同时 producer 也不能再将数据存于其上的 patition。引入replication 之后,同一个 partition 可能会有多个 replica,而这时需要在这些 replica 之间选出一个 leader,producer 和 consumer 只与这个 leader 交互,其它 replica 作为 follower 从 leader 中复制数据。

Kafka 分配 Replica 的算法如下:

  1. 将所有 broker(假设共 n 个 broker)和待分配的 partition 排序
  2. 将第 i 个 partition 分配到第(i mod n)个 broker 上
  3. 将第 i 个 partition 的第 j 个 replica 分配到第((i + j) mode n)个 broker上

leader failover

当 partition 对应的 leader 宕机时,需要从 follower 中选举出新 leader。在选举新leader时,一个基本的原则是,新的 leader 必须拥有旧 leader commit 过的所有消息。

kafka 在 zookeeper 中(/brokers/…/state)动态维护了一个 ISR(in-sync replicas),由3.3节的写入流程可知 ISR 里面的所有 replica 都跟上了 leader,只有 ISR 里面的成员才能选为 leader。对于 f+1 个 replica,一个 partition 可以在容忍 f 个 replica 失效的情况下保证消息不丢失。

当所有 replica 都不工作时,有两种可行的方案:

  1. 等待 ISR 中的任一个 replica 活过来,并选它作为 leader。可保障数据不丢失,但时间可能相对较长。
  2. 选择第一个活过来的 replica(不一定是 ISR 成员)作为 leader。无法保障数据不丢失,但相对不可用时间较短。

broker failover

  1. controller 在 zookeeper 的 /brokers/ids/[brokerId] 节点注册 Watcher,当 broker 宕机时 zookeeper 会 fire watch
  2. controller 从 /brokers/ids 节点读取可用broker
  3. controller决定set_p,该集合包含宕机 broker 上的所有 partition
  4. 对 set_p 中的每一个 partition
    4.1 从/brokers/topics/[topic]/partitions/[partition]/state 节点读取 ISR
    4.2 决定新 leader(如4.3节所描述)
    4.3 将新 leader、ISR、controller_epoch 和 leader_epoch 等信息写入 state 节点
  5. 通过 RPC 向相关 broker 发送 leaderAndISRRequest 命令

controller failover

当 controller 宕机时会触发 controller failover。每个 broker 都会在 zookeeper 的 “/controller” 节点注册 watcher,当 controller 宕机时 zookeeper 中的临时节点消失,所有存活的 broker 收到 fire 的通知,每个 broker 都尝试创建新的 controller path,只有一个竞选成功并当选为 controller。

当新的 controller 当选时,会触发 KafkaController.onControllerFailover 方法,在该方法中完成如下操作

  1. 读取并增加 Controller Epoch。
  2. 在 reassignedPartitions Patch(/admin/reassign_partitions) 上注册 watcher。
  3. 在 preferredReplicaElection Path(/admin/preferred_replica_election) 上注册 watcher。
  4. 通过 partitionStateMachine 在 broker Topics Patch(/brokers/topics) 上注册 watcher。
  5. 若 delete.topic.enable=true(默认值是 false),则 partitionStateMachine 在 Delete Topic Patch(/admin/delete_topics) 上注册 watcher。
  6. 通过 replicaStateMachine在 Broker Ids Patch(/brokers/ids)上注册Watch。
  7. 初始化 ControllerContext 对象,设置当前所有 topic,“活”着的 broker 列表,所有 partition 的 leader 及 ISR等。
  8. 启动 replicaStateMachine 和 partitionStateMachine。
  9. 将 brokerState 状态设置为 RunningAsController。
  10. 将每个 partition 的 Leadership 信息发送给所有“活”着的 broker。
  11. 若 auto.leader.rebalance.enable=true(默认值是true),则启动 partition-rebalance 线程。
  12. 若 delete.topic.enable=true 且Delete Topic Patch(/admin/delete_topics)中有值,则删除相应的Topic。

consumer

The high-level consumer API

high-level consumer API 提供了 consumer group 的语义,一个消息只能被 group 内的一个 consumer 所消费,且 consumer 消费消息时不关注 offset,最后一个 offset 由 zookeeper 保存。

使用 high-level consumer API 可以是多线程的应用,应当注意:

  1. 如果消费线程大于 patition 数量,则有些线程将收不到消息
  2. 如果 patition 数量大于线程数,则有些线程多收到多个 patition 的消息
  3. 如果一个线程消费多个 patition,则无法保证你收到的消息的顺序,而一个 patition 内的消息是有序的

The SimpleConsumer API

如果你想要对 patition 有更多的控制权,那就应该使用 SimpleConsumer API,比如:

  1. 多次读取一个消息
  2. 只消费一个 patition 中的部分消息
  3. 使用事务来保证一个消息仅被消费一次

但是使用此 API 时,partition、offset、broker、leader 等对你不再透明,需要自己去管理。你需要做大量的额外工作:

  1. 必须在应用程序中跟踪 offset,从而确定下一条应该消费哪条消息
  2. 应用程序需要通过程序获知每个 Partition 的 leader 是谁
  3. 需要处理 leader 的变更

consumer group

kafka 的分配单位是 patition。每个 consumer 都属于一个 group,一个 partition 只能被同一个 group 内的一个 consumer 所消费(也就保障了一个消息只能被 group 内的一个 consuemr 所消费),但是多个 group 可以同时消费这个 partition。

kafka 的设计目标之一就是同时实现离线处理和实时处理,根据这一特性,可以使用 spark/Storm 这些实时处理系统对消息在线处理,同时使用 Hadoop 批处理系统进行离线处理,还可以将数据备份到另一个数据中心,只需要保证这三者属于不同的 consumer group。

消费方式

consumer 采用 pull 模式从 broker 中读取数据。

push 模式很难适应消费速率不同的消费者,因为消息发送速率是由 broker 决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成 consumer 来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而 pull 模式则可以根据 consumer 的消费能力以适当的速率消费消息。

对于 Kafka 而言,pull 模式更合适,它可简化 broker 的设计,consumer 可自主控制消费消息的速率,同时 consumer 可以自己控制消费方式——即可批量消费也可逐条消费,同时还能选择不同的提交方式从而实现不同的传输语义。

consumer delivery guarantee

如果将 consumer 设置为 autocommit,consumer 一旦读到数据立即自动 commit。如果只讨论这一读取消息的过程,那 Kafka 确保了 Exactly once。

但实际使用中应用程序并非在 consumer 读取完数据就结束了,而是要进行进一步处理,而数据处理与 commit 的顺序在很大程度上决定了consumer delivery guarantee:

  1. 读完消息先 commit 再处理消息。
    这种模式下,如果 consumer 在 commit 后还没来得及处理消息就 crash 了,下次重新开始工作后就无法读到刚刚已提交而未处理的消息,这就对应于 At most once
  2. 读完消息先处理再 commit。
    这种模式下,如果在处理完消息之后 commit 之前 consumer crash 了,下次重新开始工作时还会处理刚刚未 commit 的消息,实际上该消息已经被处理过了。这就对应于 At least once。
  3. 如果一定要做到 Exactly once,就需要协调 offset 和实际操作的输出。
    精典的做法是引入两阶段提交。如果能让 offset 和操作输入存在同一个地方,会更简洁和通用。这种方式可能更好,因为许多输出系统可能不支持两阶段提交。比如,consumer 拿到数据后可能把数据放到 HDFS,如果把最新的 offset 和数据本身一起写到 HDFS,那就可以保证数据的输出和 offset 的更新要么都完成,要么都不完成,间接实现 Exactly once。(目前就 high-level API而言,offset 是存于Zookeeper 中的,无法存于HDFS,而SimpleConsuemr API的 offset 是由自己去维护的,可以将之存于 HDFS 中)

总之,Kafka 默认保证 At least once,并且允许通过设置 producer 异步提交来实现 At most once

consumer rebalance

当有 consumer 加入或退出、以及 partition 的改变(如 broker 加入或退出)时会触发 rebalance。consumer rebalance算法如下:

  1. 将目标 topic 下的所有 partirtion 排序,存于PT
  2. 对某 consumer group 下所有 consumer 排序,存于 CG,第 i 个consumer 记为 Ci
  3. N=size(PT)/size(CG),向上取整
  4. 解除 Ci 对原来分配的 partition 的消费权(i从0开始)
  5. 将第iN到(i+1)N-1个 partition 分配给 Ci

在 0.8.*版本,每个 consumer 都只负责调整自己所消费的 partition,为了保证整个consumer group 的一致性,当一个 consumer 触发了 rebalance 时,该 consumer group 内的其它所有其它 consumer 也应该同时触发 rebalance。这会导致以下几个问题:

  1. Herd effect
      任何 broker 或者 consumer 的增减都会触发所有的 consumer 的 rebalance
  2. Split Brain
      每个 consumer 分别单独通过 zookeeper 判断哪些 broker 和 consumer 宕机了,那么不同 consumer 在同一时刻从 zookeeper 看到的 view 就可能不一样,这是由 zookeeper 的特性决定的,这就会造成不正确的 reblance 尝试。
  3. 调整结果不可控
      所有的 consumer 都并不知道其它 consumer 的 rebalance 是否成功,这可能会导致 kafka 工作在一个不正确的状态。

基于以上问题,kafka 设计者考虑在0.9.*版本开始使用中心 coordinator 来控制 consumer rebalance,然后又从简便性和验证要求两方面考虑,计划在 consumer 客户端实现分配方案。

nsq区别

核心区别:

  1. kafka是pull,nsq是push
  2. nsq不固化数据

丢消息

刨根问底,kafka 到底会不会丢消息

生产者丢失消息

Kafka 通过配置 request.required.acks 属性来确认消息的生产:

  • 0 表示不进行消息接收是否成功的确认;不能保证消息是否发送成功,生成环境基本不会用。
  • 1 表示当 Leader 接收成功时确认;只要 Leader 存活就可以保证不丢失,保证了吞吐量。
  • -1 或者 all 表示 Leader 和 Follower 都接收成功时确认;可以最大限度保证消息不丢失,但是吞吐量低。

kafka producer 的参数 acks 的默认值为 1,所以默认的 producer 级别是 at least once,并不能 exactly once。

  • 如果 acks 配置为 0,发生网络抖动消息丢了,生产者不校验 ACK 自然就不知道丢了。
  • 如果 acks 配置为 1 保证 leader 不丢,但是如果 leader 挂了,恰好选了一个没有 ACK 的 follower,那也丢了。
  • all:保证 leader 和 follower 不丢,但是如果网络拥塞,没有收到 ACK,会有重复发的问题。

Kafka Broker 丢失消息

操作系统本身有一层缓存,叫做 Page Cache,当往磁盘文件写入的时候,系统会先将数据流写入缓存中,至于什么时候将缓存的数据写入文件中是由操作系统自行决定。

Kafka 提供了一个参数 producer.type 来控制是不是主动 flush,如果 Kafka 写入到 mmap 之后就立即 flush 然后再返回 Producer 叫同步 (sync);写入 mmap 之后立即返回 Producer 不调用 flush 叫异步 (async)。

Kafka 通过多分区多副本机制中已经能最大限度保证数据不会丢失,如果数据已经写入系统 cache 中但是还没来得及刷入磁盘,此时突然机器宕机或者掉电那就丢了,当然这种情况很极端。

消费者丢失消息

  • 先 commit 再处理消息。如果在处理消息的时候异常了,但是 offset 已经提交了,这条消息对于该消费者来说就是丢失了,再也不会消费到了。
  • 先处理消息再 commit。如果在 commit 之前发生异常,下次还会消费到该消息,重复消费的问题可以通过业务保证消息幂等性来解决。